Architecture
Copy
Ask AI
User → Your Chatbot → LLM
↕
Velixar API
(store + recall memories)
Implementation
Copy
Ask AI
import requests
import openai
VELIXAR_KEY = "vlx_your_key"
VELIXAR_URL = "https://api.velixarai.com/v1"
headers = {"Authorization": f"Bearer {VELIXAR_KEY}"}
def chat(user_id: str, message: str) -> str:
# 1. Recall relevant memories
memories = requests.get(f"{VELIXAR_URL}/memory/search",
headers=headers,
params={"q": message, "user_id": user_id, "limit": 5}
).json().get("memories", [])
context = "\n".join(f"- {m['content']}" for m in memories)
# 2. Call LLM with memory context
response = openai.chat.completions.create(
model="gpt-4",
messages=[
{"role": "system", "content": f"You remember this about the user:\n{context}"},
{"role": "user", "content": message}
]
)
reply = response.choices[0].message.content
# 3. Store the exchange as a memory
requests.post(f"{VELIXAR_URL}/memory",
headers=headers,
json={
"content": f"User said: {message}\nAssistant replied: {reply[:200]}",
"user_id": user_id,
"tier": 2,
"type": "context"
})
return reply